Creating your first reputation graph
This is a getting started guide that lets you create a set of rankings (trust graph) for a sample dataset provided
Overview
OpenRank SDK allows you to compute trust rankings among peer to peer interaction data using the EigenTrust algorithm as one of the available options. You'll need to provide local trust data.
Installation
First, install the OpenRank SDK:
pip install openrank-sdk
Sample Local Trust Data (Input)
Local trust represents trust relationships between peers:
codelocaltrust = [
{"i": "alice", "j": "bob", "v": 100},
{"i": "charlie", "j": "bob", "v": 100},
{"i": "alice", "j": "charlie", "v": 75}
]
Alternatively, use a CSV file:
from,to,value
alice,bob,100
charlie,bob,100
alice,charlie,75
Running the EigenTrust Algorithm
To compute trust rankings, use the EigenTrust
class:
from openrank_sdk import EigenTrust
api_key = 'your_api_key'
a = EigenTrust(api_key=api_key)
# Option A - Using local variables
a.run_eigentrust(localtrust)
a.run_eigentrust(localtrust, pretrust)
# Option B - Using CSV files
a.run_eigentrust_from_csv("./lt.csv")
a.run_eigentrust_from_csv("./lt.csv", "./pt.csv")
Example Output
The output will show the trust rankings:
pythonCopy code[
{'i': 'Charlie', 'v': 0.485969387755102},
{'i': 'Bob', 'v': 0.2933673469387755},
{'i': 'Alice', 'v': 0.22066326530612243}
]
This introduction covers the basic steps to create a trust graph using OpenRank SDK.
Last updated